Stability analysis of the numerical Method of characteristics applied to a class of energy-preserving systems. Part I: Periodic boundary conditions

نویسندگان

  • Taras I. Lakoba
  • Zihao Deng
چکیده

Stability analysis of the numerical Method of characteristics applied to energy-preserving systems. Abstract We study numerical (in)stability of the Method of characteristics (MoC) applied to a system of non-dissipative hyperbolic partial differential equations (PDEs) with periodic boundary conditions. We consider three different solvers along the characteristics: simple Euler (SE), modified Euler (ME), and Leapfrog (LF). The two former solvers are well known to exhibit a mild, but unconditional , numerical instability for non-dissipative ordinary differential equations (ODEs). They are found to have a similar (or stronger, for the MoC-ME) instability when applied to non-dissipative PDEs. On the other hand, the LF solver is known to be stable when applied to non-dissipative ODEs. However, when applied to non-dissipative PDEs within the MoC framework, it was found to have by far the strongest instability among all three solvers. We also comment on the use of the fourth-order Runge–Kutta solver within the MoC framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of the numerical Method of characteristics applied to a class of energy-preserving systems. Part II: Nonreflecting boundary conditions

Stability analysis of the numerical Method of characteristics applied to energy-preserving systems. Abstract We show that imposition of non-periodic, in place of periodic, boundary conditions (BC) can alter stability of modes in the Method of characteristics (MoC) employing certain ordinary-differential equation (ODE) numerical solvers. Thus, using non-periodic BC may render some of the MoC sch...

متن کامل

Solution of Inverse Euler-Bernoulli Problem with Integral Overdetermination and Periodic Boundary Conditions

In this work, we tried to find the inverse coefficient in the Euler problem with over determination conditions. It showed the existence, stability of the solution by iteration method and linearization method was used for this problem in numerical part. Also two examples are presented with figures.

متن کامل

Stability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method

In the present study, some perturbation methods are applied to Duffing equations having a displacement time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency analysis and nonlinear frequency is formulated as a function of all the ...

متن کامل

Dynamic Stability Analysis of a Beam Excited by a Sequence of Moving Mass Particles

In this paper, the dynamic stability analysis of a simply supported beam carrying a sequence of moving masses is investigated. Many applications such as motion of vehicles or trains on bridges, cranes transporting loads along their span, fluid transfer pipe systems and the barrel of different weapons can be represented as a flexible beam carrying moving masses. The periodical traverse of masses...

متن کامل

Nonlinear stability of rotating two superposed magnetized fluids with the technique of the homotopy perturbation

In the present work, the Rayleigh-Taylor instability of two rotating superposed magnetized fluids within the presence of a vertical or a horizontal magnetic flux has been investigated. The nonlinear theory is applied, by solving the equation of motion and uses the acceptable nonlinear boundary conditions. However, the nonlinear characteristic equation within the elevation parameter is obtained....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016